Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 108(5): 1244-1258, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36325888

RESUMO

Persistence of residual disease after induction chemotherapy is a strong predictor of relapse in acute lymphoblastic leukemia (ALL). The bone marrow microenvironment may support escape from treatment. Using three-dimensional fluorescence imaging of ten primary ALL xenografts we identified sites of predilection in the bone marrow for resistance to induction with dexamethasone, vincristine and doxorubicin. We detected B-cell precursor ALL cells predominantly in the perisinusoidal space at early engraftment and after chemotherapy. The spatial distribution of T-ALL cells was more widespread with contacts to endosteum, nestin+ pericytes and sinusoids. Dispersion of T-ALL cells in the bone marrow increased under chemotherapeutic pressure. A subset of slowly dividing ALL cells was transiently detected upon shortterm chemotherapy, but not at residual disease after chemotherapy, challenging the notion that ALL cells escape treatment by direct induction of a dormant state in the niche. These lineage-dependent differences point to niche interactions that may be more specifically exploitable to improve treatment.


Assuntos
Linfoma de Burkitt , Leucemia Aguda Bifenotípica , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Medula Óssea , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linfoma de Burkitt/tratamento farmacológico , Microambiente Tumoral
2.
Elife ; 72018 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-30355450

RESUMO

Excitatory and inhibitory synapses are the brain's most abundant synapse types. However, little is known about their formation during critical periods of motor skill learning, when sensory experience defines a motor target that animals strive to imitate. In songbirds, we find that exposure to tutor song leads to elimination of excitatory synapses in HVC (used here as a proper name), a key song generating brain area. A similar pruning is associated with song maturation, because juvenile birds have fewer excitatory synapses, the better their song imitations. In contrast, tutoring is associated with rapid insertion of inhibitory synapses, but the tutoring-induced structural imbalance between excitation and inhibition is eliminated during subsequent song maturation. Our work suggests that sensory exposure triggers the developmental onset of goal-specific motor circuits by increasing the relative strength of inhibition and it suggests a synapse-elimination model of song memorization.


Assuntos
Centro Vocal Superior/fisiologia , Plasticidade Neuronal , Aves Canoras/fisiologia , Sinapses/fisiologia , Animais , Percepção Auditiva , Aprendizagem , Inibição Neural , Vocalização Animal
3.
Development ; 144(24): 4573-4587, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29084803

RESUMO

Cells in ectotherms function normally within an often wide temperature range. As temperature dependence is not uniform across all the distinct biological processes, acclimation presumably requires complex regulation. The molecular mechanisms that cope with the disruptive effects of temperature variation are still poorly understood. Interestingly, one of five different ß-tubulin paralogs, ßTub97EF, was among the genes upregulated at low temperature in cultured Drosophila cells. As microtubules are known to be cold sensitive, we analyzed whether ßTub97EF protects microtubules at low temperatures. During development at the optimal temperature (25°C), ßTub97EF was expressed in a tissue-specific pattern primarily in the gut. There, as well as in hemocytes, expression was increased at low temperature (14°C). Although ßTub97EF mutants were viable and fertile at 25°C, their sensitivity within the well-tolerated range was slightly enhanced during embryogenesis specifically at low temperatures. Changing ß-tubulin isoform ratios in hemocytes demonstrated that ß-Tubulin 97EF has a pronounced microtubule stabilizing effect. Moreover, ßTub97EF is required for normal microtubule stability in the gut. These results suggest that ßTub97EF upregulation at low temperature contributes to acclimation by stabilizing microtubules.


Assuntos
Temperatura Baixa , Drosophila melanogaster/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/biossíntese , Aclimatação , Animais , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Trato Gastrointestinal/metabolismo , Domínios Proteicos/fisiologia , Isoformas de Proteínas/metabolismo , Ativação Transcricional/genética , Tubulina (Proteína)/genética
4.
Pflugers Arch ; 468(5): 849-58, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26898302

RESUMO

Aldosterone binds to the mineralocorticoid receptor (MR) and increases renal Na(+) reabsorption via up-regulation of the epithelial Na(+) channel (ENaC) and the Na(+)-K(+)-ATPase in the collecting system (CS) and possibly also via the NaCl cotransporter (NCC) in the distal convoluted tubule (DCT). However, whether aldosterone directly regulates NCC via MR or indirectly through systemic alterations remains controversial. We used mice with deletion of MR in ∼20 % of renal tubule cells (MR/X mice), in which MR-positive (MR(wt)) and -negative (MR(ko)) cells can be studied side-by-side in the same physiological context. Adult MR/X mice showed similar mRNA and protein levels of renal ion transport proteins to control mice. In MR/X mice, no differences in NCC abundance and phosphorylation was seen between MR(wt) and MR(ko) cells and dietary Na(+) restriction up-regulated NCC to similar extent in both groups of cells. In contrast, MR(ko) cells in the CS did not show any detectable alpha-ENaC abundance or apical targeting of ENaC neither on control diet nor in response to dietary Na(+) restriction. Furthermore, Na(+)-K(+)-ATPase expression was unaffected in MR(ko) cells of the DCT, while it was lost in MR(ko) cells of the CS. In conclusion, MR is crucial for ENaC and Na(+)-K(+)-ATPase regulation in the CS, but is dispensable for NCC and Na(+)-K(+)-ATPase regulation in the DCT.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Deleção de Genes , Receptores de Mineralocorticoides/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Aldosterona/metabolismo , Animais , Feminino , Túbulos Renais Distais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Mineralocorticoides/genética , Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
5.
Cell Rep ; 13(4): 783-797, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26489473

RESUMO

Mouse whiskers are somatotopically mapped in brainstem trigeminal nuclei as neuronal modules known as barrelettes. Whisker-related afferents form barrelettes in ventral principal sensory (vPrV) nucleus, whereas mandibular input targets dorsal PrV (dPrV). How barrelette neuron identity and circuitry is established is poorly understood. We found that ectopic Hoxa2 expression in dPrV neurons is sufficient to attract whisker-related afferents, induce asymmetrical dendrite arbors, and allow ectopic barrelette map formation. Moreover, the thalamic area forming whisker-related barreloids is prenatally targeted by both vPrV and dPrV axons followed by perinatal large-scale pruning of dPrV axons and refinement of vPrV barrelette input. Ectopic Hoxa2 expression allows topographically directed targeting and refinement of dPrV axons with vPrV axons into a single whisker-related barreloid map. Thus, a single HOX transcription factor is sufficient to switch dPrV into a vPrV barrelette neuron program and coordinate input-output topographic connectivity of a dermatome-specific circuit module.


Assuntos
Axônios/fisiologia , Tronco Encefálico/fisiologia , Proteínas de Homeodomínio/metabolismo , Neurônios/fisiologia , Vibrissas/fisiologia , Animais , Tronco Encefálico/citologia , Camundongos , Neurônios/citologia , Vibrissas/citologia
6.
EMBO J ; 34(22): 2789-803, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26438724

RESUMO

Proteins of the conserved HP1 family are elementary components of heterochromatin and are generally assumed to play a central role in the creation of a rigid, densely packed heterochromatic network that is inaccessible to the transcription machinery. Here, we demonstrate that the fission yeast HP1 protein Swi6 exists as a single highly dynamic population that rapidly exchanges in cis and in trans between different heterochromatic regions. Binding to methylated H3K9 or to heterochromatic RNA decelerates Swi6 mobility. We further show that Swi6 is largely dispensable to the maintenance of heterochromatin domains. In the absence of Swi6, H3K9 methylation levels are maintained by a mechanism that depends on polymeric self-association properties of Tas3, a subunit of the RNA-induced transcriptional silencing complex. Our results disclose a surprising role for Swi6 dimerization in demarcating constitutive heterochromatin from neighboring euchromatin. Thus, rather than promoting maintenance and spreading of heterochromatin, Swi6 appears to limit these processes and appropriately confine heterochromatin.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Multimerização Proteica/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas Cromossômicas não Histona/genética , Heterocromatina/genética , Histonas/genética , Metilação , RNA Fúngico/genética , RNA Fúngico/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
7.
Cell Rep ; 10(1): 47-61, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25543137

RESUMO

Epigenetic mechanisms can be influenced by environmental cues and thus evoke phenotypic variation. This plasticity can be advantageous for adaptation but also detrimental if not tightly controlled. Although having attracted considerable interest, it remains largely unknown if and how environmental cues such as temperature trigger epigenetic alterations. Using fission yeast, we demonstrate that environmentally induced discontinuous phenotypic variation is buffered by a negative feedback loop that involves the RNase Dicer and the protein disaggregase Hsp104. In the absence of Hsp104, Dicer accumulates in cytoplasmic inclusions and heterochromatin becomes unstable at elevated temperatures, an epigenetic state inherited for many cell divisions after the heat stress. Loss of Dicer leads to toxic aggregation of an exogenous prionogenic protein. Our results highlight the importance of feedback regulation in building epigenetic memory and uncover Hsp104 and Dicer as homeostatic controllers that buffer environmentally induced stochastic epigenetic variation and toxic aggregation of prionogenic proteins.


Assuntos
Epigênese Genética , Retroalimentação Fisiológica , Proteínas de Choque Térmico/metabolismo , Ribonuclease III/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Meio Ambiente , Proteínas de Choque Térmico/genética , Fenótipo , Príons/genética , Ribonuclease III/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética
8.
Front Neurosci ; 5: 50, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21519397

RESUMO

Assessment of three-dimensional morphological structure and synaptic connectivity is essential for a comprehensive understanding of neural processes controlling behavior. Different microscopy approaches have been proposed based on light microcopy (LM), electron microscopy (EM), or a combination of both. Correlative array tomography (CAT) is a technique in which arrays of ultrathin serial sections are repeatedly stained with fluorescent antibodies against synaptic molecules and neurotransmitters and imaged with LM and EM (Micheva and Smith, 2007). The utility of this correlative approach is limited by the ability to preserve fluorescence and antigenicity on the one hand, and EM tissue ultrastructure on the other. We demonstrate tissue staining and fixation protocols and a workflow that yield an excellent compromise between these multimodal imaging constraints. We adapt CAT for the study of projection neurons between different vocal brain regions in the songbird. We inject fluorescent tracers of different colors into afferent and efferent areas of HVC in zebra finches. Fluorescence of some tracers is lost during tissue preparation but recovered using anti-dye antibodies. Synapses are identified in EM imagery based on their morphology and ultrastructure and classified into projection neuron type based on fluorescence signal. Our adaptation of array tomography, involving the use of fluorescent tracers and heavy-metal rich staining and embedding protocols for high membrane contrast in EM will be useful for research aimed at statistically describing connectivity between different projection neuron types and for elucidating how sensory signals are routed in the brain and transformed into a meaningful motor output.

9.
Front Neuroanat ; 4: 24, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20676237

RESUMO

Three-dimensional morphological information about neural microcircuits is of high interest in neuroscience, but acquiring this information remains challenging. A promising new correlative technique for brain imaging is array tomography (Micheva and Smith, 2007), in which series of ultrathin brain sections are treated with fluorescent antibodies against neurotransmitters and synaptic proteins. Treated sections are repeatedly imaged in the fluorescence light microscope (FLM) and then in the electron microscope (EM). We explore a similar correlative imaging technique in which we differentially label distinct populations of projection neurons, the key routers of electrical signals in the brain. In songbirds, projection neurons can easily be labeled using neural tracers, because the vocal control areas are segregated into separate nuclei. We inject tracers into areas afferent and efferent to the main premotor area for vocal production, HVC, to retrogradely and anterogradely label different classes of projection neurons. We optimize tissue preparation protocols to achieve high fluorescence contrast in the FLM and good ultrastructure in the EM (using osmium tetroxide). Although tracer fluorescence is lost during EM preparation, we localize the tracer molecules after fixation and embedding by using fluorescent antibodies against them. We detect signals mainly in somata and dendrites, allowing us to classify synapses within a single ultrathin section as belonging to a particular type of projection neuron. The use of our method will be to provide statistical information about connectivity among different neuron classes, and to elucidate how signals in the brain are processed and routed among different areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...